SHAPE-THIN - Thin-Walled Cross-Sections
Various Open and Closed Thin-Walled Cross-Sections
Properties and Stresses of Thin-Walled Cross-Sections
The standalone program SHAPE THIN determines section properties of open and closed thin walled cross section and performs the stress analysis and plastic design.
SHAPE-THIN provides the option of interface with RFEM and RSTAB: SHAPE?THIN cross?sections are available in the library of the FEA or frame analysis software, and vice versa, it is possible to import and design the internal forces from RFEM and RSTAB in SHAPE?THIN.
The structural data can be entered graphically, in tables, or by means of a DXF file.
Features
Modeling of the cross-section via elements, sections, arcs and point elements
Expandable library of material properties, yield strengths, and limit stresses
Section properties of open, closed or non-connected cross-sections
Effective properties of cross-sections consisting of different materials
Determination of weld stresses in fillet welds
Stress analysis including design of primary and secondary torsion
Check of (c/t) ratios
Effective cross-sections according to
EN 1993-1-5
EN 1999-1-1
DIN 18800-2
Classification according to
EN 1993-1-1
EN 1999-1-1
Interface with MS Excel to import and export tables
Printout report
Cross-Section Properties and Stresses
SHAPE-THIN determines the section properties and stresses of any open, closed, built-up, or non-connected cross-sections.
Cross-Section Properties
o Cross-sectional area A
o Shear areas Ay, Az, Au, and Av
o Centroid position yS, zS
o Moments of inertia Iy, Iz, Iyz, Iu, Iv, Ip, Ip,M
o Radii of gyration iy, iz, iyz, iu, iv, ip, ip,M
o Inclination of principal axes α
o Cross-section weight G
o Cross-section perimeter U
o Torsional constants J, JSt.Venant, JBredt, Js
o Location of the shear center yM, zM
o Warping constants Iω,S, Iω,M or Iω,D for lateral restraint
o Max/min section moduli Sy, Sz, Su, Sv, Sω,M with locations
o Section ranges ru, rv, rM,u, rM,v
o Reduction factor λM
Plastic Cross-Section Properties
o Axial force Npl,d
o Shear forces Vpl,y,d, Vpl,z,d, Vpl,u,d, Vpl,v,d
o Bending moments Mpl,y,d, Mpl,z,d, Mpl,u,d, Mpl,v,d
o Section moduli Zy, Zz, Zu, Zv
o Shear areas Apl,y, Apl,z, Apl,u, Apl,v
o Position of area bisecting axes fu, fv
o Display of the inertia ellipse
Statical Moments
o First moments of area Qu, Qv, Qy, Qz with location of maxima and specification of shear flow
o Warping coordinates ωM
o Warping areas Qω,M
o Cell areas Am of closed cross-sections
Stresses
o Normal stresses σx due to axial force, bending moments and warping bimoment
o Shear stresses τ due to shear forces as well as primary and secondary torsional moments
o Equivalent stresses σeqv with customizable factor for shear stresses
o Stress ratios, related to limit stresses
o Stresses for element edges or center lines
o Weld stresses in fillet welds
Shear Wall Sections
o Section properties of non-connected cross-sections (cores of high-rise buildings, composite sections)
o Shear wall shear forces due to bending and torsion
Plastic Design
o Plastic capacity design with determination of the enlargement factor αpl
o Check of the (c/t) ratios following the design methods el-el, el-pl or pl-pl according to DIN 18800
Input
SHAPE-THIN includes an extensive library of rolled and parameterized cross-sections. They can be combined or complemented by new elements. It is possible to model a cross-section consisting of different materials.
Graphical tools and functions allow for modeling complex cross-section shapes in the usual way common for CAD programs. The graphical entry provides the option of setting point elements, fillet welds, arcs, parameterized rectangular and circular sections, ellipses, elliptical archs, parabolas, hyperbolas, spline, and NURBS. Alternatively, it is possible to import a DXF file that is used as the basis for further modeling. You can also use guidelines for modeling.
Furthermore, parameterized input allows you to enter model and load data in a specific way so they depend on certain variables.
Elements can be divided or attached to other objects graphically. SHAPE-THIN automatically divides the elements and provides for an uninterrupted shear flow by introducing dummy elements. In the case of dummy elements, you can define a specific thickness to control the shear transfer.
Calculation
SHAPE-THIN calculates all relevant cross?section properties, including plastic limit forces and moments. Overlapping areas are set close to reality. If cross-sections consist of different materials, SHAPE?THIN determines the effective cross?section properties with respect to the reference material.
In addition to the elastic stress analysis, you can perform the plastic including interaction of internal forces for any cross?section shape. The plastic interaction design is carried out according to the Simplex Method. You can select the yield hypothesis according to Tresca or von Mises.
It is possible to calculate the section properties and stresses of the effective cross-section according to EN 1993?1?1 and EN 1993?1?5 or EN 1999?1?1. Cross?section classification considers the available combination of internal forces.
Optionally, SHAPE?THIN checks the limit values (c/t) in compliance with the design methods el?el, el?pl or pl?pl according to DIN 18800. The (c/t) zones of elements connected in the same direction are recognized automatically.
Results
All results can be evaluated numerically and graphically and displayed in a visualization. Selection functions facilitate the targeted evaluation.
The printout report corresponds to the high standards of the FEA software RFEM and the frame analysis software RSTAB. Modifications are updated automatically.
© Copyright 2000-2023 COGITO SOFTWARE CO.,LTD. All rights reserved